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Solution 4

1. Prove Hölder’s Inequality in vector form: For x,y ∈ Rn , p > 1 and q conjugate to p,

|x · y| ≤

 n∑
j=1

|xj |p
1/p n∑

j=1

|yj |q
1/q

.

You may prove it directly or deduce it from its integral form by choosing suitable functions
f and g.

Solution. Dividing [0, 1] equally into n many subintervals Ij and set f(x) = xj , g(x) = yj ,
for x ∈ (xj , xj+1], Hölder’s inequality for vectors follows from the same inequality for f
and g.

2. Prove Minkowski’s Inequality in vector form: For x,y ∈ Rn , p > 1,

‖x + y‖p ≤ ‖x‖p + ‖y‖p .

You may prove it directly or deduce it from its integral form by choosing suitable functions
f and g.

Solution. Same as in the previous problem.

3. Prove the generalized Hölder’s Inequality: For f1, f2, · · · , fn ∈ R[a, b],

∫ b

a
|f1f2 · · · fn|dx ≤

(∫ b

a
|f1|p1

)1/p1 (∫ b

a
|f2|p2

)1/p2

· · ·
(∫ b

a
|fn|pn

)1/pn

,

where
1

p1
+

1

p2
+ · · ·+ 1

pn
= 1, p1, p2, · · · , pn > 1 .

Solution. Induction on n. n = 2 is the original Hölder, so it holds. Let

1

p1
+

1

p2
+ · · ·+ 1

pn+1
= 1 .

First, using the original Hölder, we have∫ b

a
|f1f2 · · · fn+1| dx ≤

(∫ b

a
|f1|p1 dx

)1/p1 (∫ b

a
|f2 · · · fn+1|q dx

)1/q

,

where q is conjugate to p1. It is easy to see

1 =
q

p2
+ · · ·+ q

pn+1
.

By induction hypothesis,∫ b

a
|f q

2 · · · f
q
n+1| dx ≤

(∫ b

a
|f2|p2 dx

)1/p2

· · ·
(∫ b

a
|fn+1|pn+1 dx

)1/pn+1

,

done.

4. Show that for 1 ≤ p < r ≤ ∞,
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(a)

‖x‖p ≤ n
1
p
− 1

r ‖x‖r ,

(b)

‖x‖r ≤ n
1
r ‖x‖p.

Solution. (a)

‖x‖pp =
∑
|xj |p

≤
(∑

|xj |p
r
p

) p
r
(∑

1
r

r−p

) r−p
r

= n
r−p
r ‖x‖pr

so
‖x‖p ≤ n

1
p
− 1

r ‖x‖r .

(b) First of all, ‖x‖∞ ≤ ‖x‖p. Then,

‖x‖r ≤ (n‖x‖r∞)
1
r

≤ n
1
r ‖x‖∞

≤ n
1
r ‖x‖p .

5. Establish the inequality, for f ∈ R[a, b], ‖f‖p ≤ C‖f‖r when 1 ≤ p < r for some constant
C.

Solution By Holder’s Inequality,∫ b

a
|f |p ≤

(∫ b

a
1 dx

)1−p/r (∫ b

a
|f |p

r
p dx

)p/r

≤ Cp‖f‖pr ,

where
C = (b− a)

1
p
− 1

r .

6. Show that there is no constant C such that ‖f‖2 ≤ C‖f‖1 for all f ∈ C[0, 1].

Solution Consider the sequence

fn(x) =

{
−n3x + n, x ∈ [0, 1/n2],
0, x ∈ (1/n2, 1].

We have ‖fn‖1 = 1/(2n) → 0 as n → ∞, but ‖fn‖2 = 1/
√

3 for all n. Hence, it is
impossible to have some C satisfying ‖f‖2 ≤ C‖f‖1 for all f .

Note. In general, it is impossible to find a constant C such that ‖f‖r ≤ C‖f‖p, p < r, for
all f .

7. Show that ‖ · ‖p is no longer a norm on Rn for p ∈ (0, 1).

Solution Again (N3) is bad. Consider two n-tuples x = (1, 0, 0, . . . , 0) and y = (0, 1, 0, . . . , 0).
We have ‖x + y‖p = 21/p but ‖x‖p = ‖y‖p = 1, so ‖x + y‖p > ‖x‖p + ‖y‖p .
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8. In a metric space (X, d), its metric ball is the set {y ∈ X : d(y, x) < r} where x is the
center and r the radius of the ball. May denote it by Br(x). Draw the unit metric balls
centered at the origin with respect to the metrics d2, d∞ and d1 on R2.

Solution. The unit ball B2
1(0) is the standard one, the unit ball in d∞-metric consists

of points (x, y) either |x| or |y| is equal to 1 and |x|, |y| ≤ 1, so B∞1 (0) is the square of
side length 2 centered at the origin. The unit ball B1

1(0) consists of points (x, y) satisfying
|x|+ |y| ≤ 1, so the boundary is described by the curves x+y = 1, x, y ≥ 0, x−y = 1, x ≥
0, y ≤ 0,−x+ y = 1, x ≤ 0, y ≥ 0, and −x− y = 1, x, y ≤ 0. The result is the tilted square
with vertices at (1, 0), (0, 1), (−1, 0) and (0,−1).

9. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is,
d(x, y) = 1 if x 6= y.

Solution. When r ∈ (0, 1], Br(x) = {x}. When r > 1, Br(x) = X.

10. Consider the functional Φ defined on C[a, b]

Φ(f) =

∫ b

a

√
1 + f2(x) dx.

Show that it is continuous in C[a, b] under both the supnorm and the L1-norm. A real-
valued function defined on a space of functions is traditionally called a functional.

Solution. Let h(y) =
√

1 + y2. Then Φ(f) =
∫ b
a h(f)dx. Since h′(y) =

y√
1 + y2

≤ 1,

one has, by the mean value theorem

|Φ(f)− Φ(g)| ≤
∫ b

a
|h(f)− h(g)|dx ≤

∫ b

a
|f − g| max

s∈(g,f)
|h′(s)|dx

≤
∫ b

a
|f − g|dx.

Hence it is continuous in C[a, b] under the d1-distance. As d∞ is stronger than d1, the
functional is also continuous in d∞.

11. Consider the functional Ψ defined on C[a, b] given by Ψ(f) = f(x0) where x0 ∈ [a, b] is
fixed. Show that it is continuous in the supnorm but not in the L1-norm. Suggestion:
Produce a sequence {fn} with ‖fn‖1 → 0 but fn(x0) = 1, ∀n. Ψ is called an evaluation
map.

Solution. Take [a, b] = [−1, 1] and x0 = 0. Note |Ψ(f) − Ψ(g)| = |f(0) − g(0)| ≤
maxx∈[−1,1] |f(x)− g(x)|. Hence it is continuous in the d∞-metric. Let fn be a continuous
function such that fn(x) = 1, x ∈ [−1/n, 1/n]; fn(x) = 0, x ∈ [−2/n, 2/n], and 0 ≤ fn ≤ 1.
Then Ψ(fn) = 1 but fn → 0 in the d1-metric.


